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The method of structural mappings of gyroscopic systems [l, 21 is developed for systems involving non-conservative positional 
forces. This technique, considered in the aspect of the legitimate use of the precessional equations of the applied theory of 
gyroscopes, enables the difficulties associated with the presence of non-conservative structures in the initial equations to be 
overcome, and in many cases enables of the Thomson-Tait-Chetayev theorems to be used directly. 0 2001 Elsevier Science Ltd. 
All rights reserved. 

1. FORMULATION OF THE PROBLEM 

We will investigate a matrix equation of the form 

Ji+(D+HG)i+(l-I+P)x=X(x,i) (1.1) 

where x = col(xi, . . . , x,J is an unknown vector, J = Jr, D = D’, G = -G*, II = II*, P = -PT (the 
superscript T denotes transposition) are constant n X n matrices, X(x, i) is an n-dimensional column 
vector containingx and i to powers greater than 1 and H > 0 is a certain large scalar parameter. It will 
be assumed throughout that the matrices J and D are positive-definite and the matrices G and P non- 
singular; accordingly, n must be even. 

Equation (1.1) describes the perturbed motion of many dynamical systems driven by dissipative, 
gyroscopic, potential and non-conservative positional forces. We will assume throughout that 

J=diag(J,, . . . . J,), D=diag(bi. . . ..b.,) (1.2) 

In systems containing gyroscopes, J will be the matrix of total moments of inertia about the relevant 
axes. 

Together with Eq. (1.1) we will consider an equation which is usually referred to as the precessional 
equation. It is derived from (1.1) by neglecting the first matrix term: 

(D+HG)li+(n+P>u=U(u,li) (1.3) 

Mechanically interpreted, the replacement of the initial equation by the approximate equation (1.3) 
essentially means that allowance is made in the total kinetic energy of the system (or in the total angular 
momentum) only for the part due to the rotation of the gyroscopes, which is assumed to be fast. Under 
such conditions the system obtained is half the order of the original one, which, of course, is extremely 
convenient in the practical application of precession theory. 

However, the transition to the equations of precession theory requires suitable justification, since it 
is not always legitimate. The mathematical basis for the admissibility of using Eq. (1.3). has been studied 
by many researchers, who have considered both the mathematical aspect of the problem and the 
construction and development of practical methods of solution [3-91. In that connection we draw 
attention, for example, to the methods of integral transformations and splitting transformations, which 
lead to the classification of motions as slow (precessional) and fast (nutational). 

A serious obstacle to the formal transition to the equations of precession theory is the presence in 
the initial equations of non-conservative positional terms. In that case, an asymptotically stable solution 
obtained via precession theory may turn out to be unstable in the exact equations, owing to divergence 
of fast nutational motions [3, 91. This is further complicated by the fact that the presence of non- 
conservative positional structures in the equations of perturbed motion of gyroscopic systems excludes 
the use of the Thomson-Tait-Chetayev theorems [lo]. 
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The theory set out below, unlike the method of splitting transformations, does not require the use 
of asymptotic expansions, being based on a structural transformation of Eq. (1.1) [l, 21, which enables 
the matrix of non-conservative positional forces to be eliminated from the transformed equation. 

2. TRANSFORMATION OF EQ. (1.1) 

We will change to a new variable in (1.1) by setting 

x=Lk (2.1) 

where the matrix L will be determined later. This transformation - the inverse of that used in [l, 2]- 
turns out to be more convenient in the present case. As a result, we obtain the equation 

J~+[2Ji+(D+HC)L]~+[Ji:+(D+HG)L+cn+~>Ll~=~ (2.2) 

where Z is a column vector containing 5 and 11 in powers higher than unity. 
A part from the non-linear vector Z:, Eq. (2.2) may be written as 

5+L-‘[2i+J-‘(D+HG)L]S+L-‘[i;+J-‘(HGi+nL+Di+PL)]S=O (2.3) 

satisfaction of the condition 

Di+ PL=O (2.4) 

enables us to eliminate the matrix P from Eq. (2.3). Condition (2.4), which is similar to the second of 
conditions (2.6) in [2], may be expressed as a matrix equation 

I 
i= AL (A = D-‘PT) (25) 

whose solution is 

L = eA’L(0) (2.6) 

where L(0) corresponds to the starting time. 
If L(t) and L(t) are bounded in the interval [0, co), and in addition ldet L(t)1 * m > 0 (where m is a 

positive constant), then L will be a Lyapunov matrix. In that case transformation (2.1) does not change 
the stability properties of the linear part of the initial equation (1.1). 

Taking Eq. (2.4) into consideration, we replacet and t in Eq. (2.3) after which the latter may be 
written in the form 

~+Q~+RC=O (2.7) 

where 

Q= L-‘VL, R= L-‘WL 

V = J-‘(D+ HG)+2A, W = A* + J-‘(I-I + HGA) 

Thus, the matrices V and Q, and accordingly W and R also satisfy a similarity relation. 
The general equation (2.7) will be the basis for the following analysis. 

(2.8) 

3. ADJUSTABLE GYROSCOPIC SYSTEMS 

It is will known that a real skew-symmetric matrix may always, by means of an orthogonal similarity 
transformation, be reduced to canonical block-diagonal form. In that connection we note that there is 
an extensive class of dynamical systems described by Eq. (1.1) . m which the skew-symmetric matrices 
G and P are represented from the start in block-diagonal form, with only 2 X 2 blocks along the principal 
diagonal 



Structural transformations of non-conservative systems 

G=diag(Gt, . . ..G.), P=diag(P,, . . . . P,), 2q = n 

897 

Gk =g,S, S=P,s. s= (3.1) 

gk ’ O, pk>O, k=l,2 ,..., q 

Such systems include, in particular, platform poly-gyroscopic gyrohorizons equipped with control of 
the radial correction type. 

Taking representation (3.1) into consideration, we return to Eq. (2.5) putting L = jlliill?. We have 

lli, II;=diag(b;‘,...,b,-‘)diag(-~,...,-P,)IIlii II; (3.2) 

Using (3.2), we arrive at equations in the elements 1, of the matrix L, which fall into q groups of 
independent equations 

ii +n& = 0, i,j=l,2 ,..., n; k=l,2 ,..., q (3.3) 

Letting the solutions of Eqs (3.3) satisfy individual initial conditions, we obtain the solution (2.6) for 
the class of dynamical systems under consideration, in the form 

L = diag (L, , . . . , Lq) (3.4) 

where 

Lk = 

I/ 

cod&t )/z -5 sinRkt 

sin i&t cos fi,t 
(3.5) 

rk = b,, l&k_,, R, = P,(b,,-,bz,) 
-x, k = 1,2, . . . . q 

In view of representations (3.5) if b, = b2 = . . . b,,, the Lyapunov matrix (3.4) becomes orthogonal. 
Let us assume that the forces acting on the system, which are modelled by the matrix D in Eq. (1.1) 

are due solely to a resistant medium. In that case the total moment of the drag forces (dissipation is 
assumed to be complete) depends, generally speaking, not only on the physical properties of the medium 
but also on the mass distribution in the system. Following the Sommerfeld-Greenhill conceptions as 
applied to the system under consideration, we assume that 

D=cLj (3.6) 

where u > 0 is a small constant scalar parameter, depending on the properties of the medium, and J 
is the matrix of moments of inertia of the system, defined by the first formula of (1.2) [ll]. 

Taking the foregoing reasoning into consideration, we return to the last two formulae of (2.8) bearing 
in mind Eqs (1.2) (3.1) and (3.6). We have 

(3.7) 

6’&, = (&k_, )-‘(@$?, -2&h %k = (cL/Zk )-b&k - 2Pk) 

W = diag (X 1 E, . . . , X,$) + J-‘n 

Xk = ~-*(~2k-,~Zk)-‘~k(~~k~ - Pkh k= 1,2,...,q 

where E,, is the identity matrix of order n; when n : 2 the subscript is omitted. 
A mechanical system driven solely by non-conservative forces will always be unstable, and moreover 

it will be independent of the higher-order terms represented in Eq. (1.1) by the vector X&i). We can 
nevertheless ensure asymptotic stability in a non-conservative system in the case when, besides non- 
conservative positional forces, dissipative and gyroscopic forces are also present, and the number of 
coordinates determining instability is even [3]. The apparatus described above enables us to use this 
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fact in a legitimate transition to the equations of precession theory, as applied to systems in which 
conditions (3.1) are satisfied. 

Setting Il = 0 in the last formula of (2.8) and taking (3.7) into account, we verify that the conditions 
Q = Vand R = W hold identically in expressions (2.8). Multiplying Eq. (2.7) on the left by the matrix 
J, we now have 

J~+v,~+w,~=O (3.8) 

where it must be assumed that 

V, =JV=D+diag(h,S,...,h,S) 

h = P-‘(HI’& - 2Pk) 
(3.9) 

W = JW = diag (ct , . . ., c,) 

CZP-I = XAJZ-I 9 C2k = xdik~ k= 1,2, . ...9 

Thus, the matrix WI in Eq. (3.8) has turned out to be diagonal, and it therefore has no non-conservative 
structures. The Thomson-Tait-Chetayev theorems are thus applicable to Eq. (3.8). 

Indeed, if it is assumed that there are no dissipative and gyroscopic terms in the matrix Vi of (3.9), 
quantities ci (which are the Poincare coefficients for this case [ll]) will be positive, as is implied by the 
inequalities 

H&Cl - Pk ’ 0, k= 1,2, . ...9 (3.10) 

which follow from formulae (3.7) and (3.9). These correspond to (non-asymptotic) stability of the trivial 
solution of Eq. (3.8) under the specified conditions. If inequalities (3.10) hold then, by the corresponding 
Thomson-Tait-Chetayev theorem, the addition of drag forces with complete dissipation and arbitrary 
gyroscopic forces (corresponding to hk f 0) will make Eq. (3.8) asymptotically stable and accordingly 
nutational oscillations will be damped out. 

Inequalities (3.10) yield lower bounds for the dissipation coefficient u 

(3.11) 

which guarantee damping of nutation. Inequalities (3.10) agree with the sufficient condition for stability 
obtained previously for the case in which ]lpki]] = oHllg~j]l, where a is a positive constant, but without 
involving the problem of changing to the equations of precession theory. Indeed, settingpk = aH& in 
(3.1), we obtain the condition p > a [12]. 

If Il = 0, the structures of matrices (3.1) and (3.4) imply that Eqs (1.1) and (3.10) have q independent 
groups of second-order scalar equations. 

If the system involves potential forces (11 f 0 in (l.l)), the conditions for damping nutational 
oscillations may be insufficient to guarantee stability of the entire system, although they must be stipulat- 
ed in any case. On the assumption that the parameter H is sufficiently large, one must also guarantee 
asymptotic stability in precessional equation (1.3) [3]. 

We will now consider some illustrative examples. 

4. A SINGLE-ROTOR ADJUSTABLE GYROCOMPASS 

The selective property of a gyroscopic compass relative to the meridian direction of a location is achieved 
through a pendulum effect, which acts in such a way that the intrinsic angular momentum vector of 
the compass is fixed in the meridian plane of the location. The pendulum effect may be realized in various 
ways, say be attaching a special pendulum to the sensitive element. 

Adjustable course indicators based on an astatic three-stage gyroscope are widely used at present. 
In such course indicators the torques necessary to generate the pendulum and damping effects are 
established by special adjusting devices. 

Without describing these devices in detail, we will consider one version of a single-rotor adjustable 
course indicator, whose theory, in the precessional formulation traditional for gyroscopic compasses, 
may be found in [13]. The equations of motion of the course indicator, which is assumed to be mounted 
on a horizontally stabilized platform, the base being stationary relative to the Earth, have the form 
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Hdr-(K+ HUcoscp)P=O, H~+HlJcoscpa+K~P=O (4.1) 

where a and p are the coordinates determining instability, H is the intrinsic angular momentum of the 
gyroscope, U is the angular velocity of rotation of the Earth, cp is the latitude of the location and K and 
E are certain positive constants. The parameters of the gyrocompass are always chosen so as to satisfy 
the condition K % HU cos q. In the content of Eqs (4.1), the torque Kl3 imitates the pendulum effect, 
while the vertical torque KE l3 guarantees damping of the compass vibrations. The characteristic equation 
of system (4.1) will be 

Hh2+~KlL+(K+HUcos~)Ucos~=0 (4.2) 

Hence, it follows that if E and K are positive, the trivial solution of system (4.1) will be asymptotically 
stable. 

The qualitative picture changes considerably if, not confining ourselves to the scope of precession 
theory, allowance is made for inertial terms in Eqs (4.1). In that case the equations will be 

J&ii+ Hp+ HUcosqxi+ K@=O 

(4.3) 
J$-Hdr+(K+HUcoscp)P=O 

where Jr and J2 are the total moments of inertia of the course indicator relative to its suspension axes. 
The characteristic equation of system (4.3) will be 

J,J~h4+(H2+KJ,+(J,+J2)H(/~~~(p]h2+K&Hh+(K+HUcos(p)HUcos~=0 (4.4) 

Since Eq. (4.4) contains a linear term in A but there is no term with h3, it follows, unlike the situation 
in Eq. (4.2), that the trivial solution of system (4.3) is unstable. This instability is a consequence of the 
non-conservative structure of the vertical component of Ks l3 of the adjusting torque, which, when there 
are no dissipative forces, leads to divergence of the nutational oscillations. 

Indeed, we separate out the non-conservative matrixP = (K&/2)S from the matrix of positional forces 
in system (4.3). In this case asymptotic stability is achievable only if there are dissipative forces in 
Eqs (4.3). The corresponding equations have the form 

J&i + b,dr + H(p + U coscpa) + K&p = 0 
(4.5) 

If we decompose the matrix of positional terms in Eqs (4.5) into its symmetric and skew-symmetric 
parts, the system turns out to be a special case of the system described by matrix equation (1.1). We 
have 

x=col(a,p), J=diag(J,, J2), D=diag(b,,b*) 

HG = HS, P = (KF.Q)S 

Thus, the matrices G and P have the structures of matrices (3.1) and the gyrocompass therefore 
belongs to the class of systems discussed in Section 3. 

If one uses the Sommerfeld-Greenhill conceptions, which is very convenient in applied computa- 
tions, one must put bl = pJ1, b2 = pJ2. In that case conditions (3.10), which ensure damping of the 
nutational oscillations, may be used directly. We have the inequality 

2Hl.r > KE (4.6) 

If E > 0 and K > 0, then, as follows from (4.2), asymptotic stability will also hold in precessional equations 
(4.1). 

Condition (4.6) corresponds to the similar condition (4.4) in [9] (provided one puts Q, = uA, 
Q2 = pB there), which was obtained for a single-rotor gyrocompass of the pendulum type. 

Inequality (4.6) yields a lower bound for the dissipation coefficient b for which Eqs (4.5) will be 
asymptotically stable. This bound does not impose any serious restrictions on the value of lo and is 
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generally 
elements 

r ensured, with a considerable margin, by the slight friction always present in the suspension 
of the system. In justifying the change to precessional equations (4.1) however, condition (4.6) 

must be specifically stipulated. 

Condition (4.6) may be derived by applying the Hurwitz criterion to the characteristic equation 

a0L4 +*,A3 +a$.* +a3h+a4 = 0 

of system (4.5), where 

ao= J,Jp 01 =U'I J2 

a2 =[H* + KJ, +(J, + J2)HUcoscp+p2JIJ2] 

(4.7) 

(4.8) 

a3 = HKE+[KJ, +(JI + J2)HUcoscp]p 

a4 =(K+HiJcoscp)HUcoscp 

As applied to Eq. (4.7) since the coefficients of the latter are positive, the Hurwitz conditions reduce to an 
inequality 

F E ala2a3 -aOaz -a:04 > 0 

Taking expressions (4.8) into consideration, we deduce from (4.9) that 

(4.9) 

where 

I-= H*KE(~/.~H-KE)+A>O (4.10) 

A= (2H*[KJ, +(J, + J2)HUcoscp]+ KJ;(K+2vHUcoscp)-(J, - J2)*(HUcoscp)*)p2 + 

+~EJ,J~K~~+~J,J~(KJ~+(J~+J~)HUCOS(P]~~, v=(J,-J2)J;’ (4.11) 

Since we have assumed that the damping coefficient ~1 is small and the intrinsic angular momentum H large, the 
added term A, which is the sum of the terms of order t.? and higher, cannot affect the sign of the quantity (4.10). 
The latter is determined in this care by the first terms in (4.10), which leads to condition (4.6) 

Thus, direct application of condition (3.10), leading to inequality (4.6) turns out in this case to be much simpler 
than the use of the Hurwitz criterion with its fairly cumbersome computations, which lead to expressions (4.10) 
and (4.11). 

5. A FOUR-GYROSCOPE GYROHORIZON 

In the light of the theory presented in Sections 1-3, we will now consider a version of a force gyrohorizon 
with control of the radial-correction type. A description of such devices, as well as their theory, limited 
to the framework of the precessional formulation, may be found in [13]. Based on the complete equations 
(with inertial terms incorporated), Lyapunov’s direct method has been used to investigate the stability 
of a four-gyroscope gyrohorizon for the case of a fixed base [14]. 

The system in question is an astatic platform in gimbals stabilized in the horizon by four identical 
gyroscopes whose cases have vertical axes. Each pair of gyroscopes is linked by anti-parallelograms, 
which make them rotate in the plane of the platform at the same angles on opposite sides. The motion 
of the platform is controlled by a special correction system which ensures that adjusting torques are 
generated relative to the axes of the platform and the gyroscope cases. 

The equations of motion of the platform, assuming that it is mounted on a base revolving at constant 
angular velocity w relative to the vertical, may be written as follows: 

J,.i,+b,i, +2H.i2+2H~,+s,x2 =0 

J2x2 + b,x, - 2Hx,+2Hur4 -s2xI =0 

(5.1) 
J2X3 + b2X3 + 2Hi4 + 2 HCW, + ~2x4 = 0 

J,X, + b,_i, - 2Hi3 +2Hcw2 -sIx3 =0 
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where x1 andx4 are the angles by which the platform deviates from the plane of the horizon in perturbed 
motion of the system,x2 andX3 are the angles by which each pair of gyroscopes deviates from the vertical 
axes of their cases, br, b2 and b3 are the coefficients of viscous friction in the suspension of the platform 
and the gyroscopes, His the intrinsic angular momentum of each of the four gyroscopes, st and s2 and 
positive coefficients of proportionality in the adjusting torques and Jr, J2, and J3 are the intrinsic total 
moments of inertia of the system about the axes of the platform and the vertical axes of the gyroscope 
cases. 

Decomposing the matrix of positional terms in system (5.1) into symmetric and skew-symmetric parts, 
we reduce the system to the form covered 
must assume that 

by the initial matrix equation (1.1) where-in this case we 

X = col(x,. x2, x3, x,1. J = diag(J,, J2, J2, J3) 

D = diag(b,, b2. 62,bs). HG=2Hdiag(S,S), P=sdiag(S,S) 

II I?lT 2 HwE 
I-I= 

2HwE II -mT ’ 

0 I 
T= 

II II I 0 (5.2) 

,+s, +s2). ,+s, -$1 

Comparing the expressions obtained for G and P with representations (3.1), we see that the 
gyrohorizon under consideration belongs to the class of systems considered in Section 3. Setting 
L = l&11:, we obtain Eq. (3.2) in the form 

(5.3) 

Assuming that the solutions of Eq. (5.3) satisfy the condition L(0) = E, we arrive at the Lyapunov 
matrix L = diag (L,, L2). The components Lt and L2 may be found from the general representation 
(3.5) if we takes 4 = 2 and use the notation in Eqs (5.1). 

If, following the Sommerfeld-Greenhill conceptions, one puts br = l.~Jr, b2 = d2, b3 = pJ3, then 
conditions (3.10) may be used to derive a lower bound for the coefficient p,, which will guarantee damping 
of the nutational oscillations. Using the notation (5.2), this gives 

n > (s, + s2)l(4H) (5.4) 

In the case of fixed base (w = 0), when system (5.1) splits into two independent systems in (x1, x2) 
and (x3, x4), the validity of condition (5.4) implies that the gyrohorizon is asymptotically stable. 

If w f 0, and accordingly Il f 0 in (5.1), further study of the precessional system obtained from (5.1) 
is necessary, as noted in Section 3. This has been done for the case b3 = 6, [13] using the Hurwitz 
criterion; in terms of the notation for system (5.1) the result is the inequality 

sls2 > b, bzco2 (5.5) 

The simultaneous validity of conditions (5.4) and (5.5) guarantees that the system with w f 0 will 
be asymptotically stable. 

Inequality (5.5) agrees with the conditions for the matrix Wt = JIV, where W is defined as in the last 
formula of (2.8) to be positive-definite; this is obvious if one notes that the similarity transformation 
(2.8) does not change the eigenvalues of the matrices V and Win Eqs (2.7). In that case, according to 
the method used to derive the precessional equations, one must retain in the matrix WI for this case 
only those terms that contain the intrinsic angular momentum H of each of the four gyroscopes as a 
factor. We have 

(5.6) 
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Applying Sylvester’s criterion to the symmetric matrix (5.6) we obtain in the conditions for it to be 
positive-definite. Putting b3 = bI in the matrix, we obtain the inequality 

(3, + Sz)* > 46&W* (5.7) 

Since, if s1 # s2, it is always true that (sl + s2)* > 4sIs2, it follows that if inequality (5.5) holds, the same 
is all the more true of condition (5.7) 
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